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Abstract. In this paper, by conditioning on the matrix variate normal

distribution (MVND) the construction of the matrix t-type family is con-

sidered, thus providing a new perspective of this family. Some important

statistical characteristics are given. The presented t-type family is an

extension to the work of Dickey [8]. A Bayes estimator for the column

covariance matrix Σ of MVND is derived under Kullback Leibler diver-

gence loss (KLDL). Further an application of the proposed result is given

in the Bayesian context of the multivariate linear model. It is illustrated

that the Bayes estimators of coefficient matrix under both SEL and KLDL

are identical.
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1. Introduction

Definition 1.1. The random matrix X(n× p) is said to have a matrix variate
normal distribution with mean M(n × p) and covariance matrix Ω ⊗ Σ where
Σ(p × p) > 0 and Ω(n × n) > 0, if vec(X) ∼ Npn(vec(M), Ω ⊗ Σ). We shall
use the notation
X ∼ Nn,p(M, Ω⊗Σ). The probability density function (p.d.f) of X is given by
(Gupta and Nagar [11])

f(X) = (2π)−np/2 det(Ω)−p/2 det(Σ)−n/2

× exp

{
−1

2
tr

[
Ω−1(X − M)Σ−1(X − M)′

]}
, X ∈ R

n×p, M ∈ R
n×p,

where ⊗ is the Kronecker product and vec is the vectorizing operation for matrix

notation.

If X ∼ Nn,p(M, Ω ⊗ Σ), then the chracteristic function of X is

φX(Z) = E [exp (tr(iZ ′X))]

= exp
[
tr

(
iZ ′M − 1

2
Z ′ΩZΣ

)]
, Z ∈ R

n×p,

and E(X) = M , COV (vec(X)) = Ω ⊗ Σ. (The notation A > 0 means A is
symmetric and positive definite.)
The matrix variate normal distribution (MVND) belongs to the class of ma-
trix variate elliptically contoured distributions ( Gupta and Varga [12] ). In
particular for M = 0, the distribution belongs to the class of right spherical
distributions, when Σ = Ip, the distribution belongs to the class of left spherical
distributions when Ω = In, and the distribution belongs to class of spherical
distributions if both Σ = Ip and Ω = In.

The MVND has many applications, that we only focus on conditional per-
spective for our use. A generalized matrix t-type distribution is defined by
conditioning on the MVND. More important from a practical point of view, we
apply the derived results to construct the Bayes estimator and its application
in multivariate linear models.
MacDonald and Newey [17] introduced the family of univariate generalized
t-distributions. This family includes the normal, the power exponential and
the univariate t-distributions as the special or limiting cases. Butler et al. [5]
pointed out that the generalized t-distribution can be obtained as a scale mix-
ture of the power exponential and the inverse generalized gamma distributions.
This distribution has been widely used as a robust alternative to the normal dis-
tribution for modeling the errors in regression. Arellano-Valle and Bolfarine [2]
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proposed a generalized multivariate t distribution family and studied the prop-
erties of the distributions included in this family. They obtained this family of
distributions as a scale mixture of the normal and the inverse gamma distri-
bution. This distribution family includes the multivariate t distribution as a
special case.
Arslan [3] defined a new family of multivariate generalized distributions as a
scale mixture of the multivariate power exponential distribution introduced
by Gómez, et al. [10] and the inverse generalized gamma distribution with a
scale parameter. Arslan [3] showed that this family of distributions belongs to
the family of elliptically contoured distributions, and the multivariate normal
distribution,the multivariate t distribution and the generalized multivariate t
distribution introduced by Arellano-Valle and Bolfarine [2] are the special or
limiting cases of the newly proposed family of multivariate generalized distri-
butions.
Arslan [3] also showed that the univariate generalized t-distribution introduced
by McDonald and Newey [17] is also a special case of this family. Thabane and
Haq [19] considered the matrix generalized inverse Gaussian as the scale dis-
tribution and applied it in the Bayesian estimation of the multivariate linear
model.
With these in mind, there are some other mathematical extensions by chang-
ing the scale distribution. Therefore, generalize t-models can be constracted by
applying the inverse Wishart or inverse matrix variate gamma distributions.

Definition 1.2. A random matrix Σ of order p is said to have an inverse
multivariate gamma distribution with parameters α, β and Ψ denoted by Σ ∼
IMGp(α, β, Ψ), if its density function is given by

h(Σ) =
det(Ψ)α

Γp(α)βαp
exp

[
− 1

β
tr(ΨΣ−1)

]
det(Σ)−α−(p+1)/2,

where Σ(p × p) > 0, Ψ(p × p) > 0, α > (p − 1)/2, β > 0 and Γp(α) is the
multivariate gamma function given as

Γp(α) = πp(p−1)/4

p∏
j=1

Γ
(

α − j − 1
2

)
.

Definition 1.3. A random matrix Z of order p is said to have a multivariate
gamma distribution with parameters α, β and Σ denoted by Z ∼ MGp(α, β, Σ),
if its density function is given by

f(Z) =
det(Σ)−α

βpαΓp(α)
etr

(
− 1

β
Σ−1Z

)
det(Z)α−(p+1)/2, Z > 0,

where α > (p − 1)/2, β > 0, Σ is a positive definite matrix.
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2. Family of Generalized Matrix t-Distributions

In this section, the main result of the paper concerning the construction of
the new family of matrix variate t-distributions is presented. This distribution
will be applied in the Bayesian context.

Definition 2.1. The random matrix T (n × p) is said to have a generalized
matrix variate t-distribution (GMT) with parameters M ∈ R

n×p, Ψ(p×p) > 0,
Ω(n × n) > 0, α > (p − 1)/2, β > 0 if its p.d.f is given by

f(T ) =
det(Ψ)−n/2 det(Ω)−p/2Γp(α + n/2)

(2π/β)np/2Γp(α)

× det
[
In +

β

2
Ω−1(T − M)Ψ−1(T − M)′

]−(α+n/2)

.(1)

We shall use the notation T ∼ Tn,p(α, β, M, Ω, Ψ).

For β = 2 and α = n+p−1
2 , GMT distribution simplifies to the matrix T

distribution with n degrees of freedom. (See Gupta and Nagar [11])

Theorem 2.1. Let X |Σ ∼ Nn,p(0, Ω ⊗ Σ) and Σ ∼ IMGp(α, β, Ψ). Then,
X ∼ Tn,p(α, β, 0, Ω, Ψ).

Proof. Using conditional method, we find

f(X) =
∫

Σ>0

g(X |Σ)h(Σ)d Σ

=
det(Ψ)α det(Ω)−p/2

Γp(α)(2π)np/2βαp

∫
Σ>0

det(Σ)−(α+(n+p+1)/2)

× exp
[
− 1

β
tr

(
(
β

2
X ′Ω−1X + Ψ)Σ−1

)]
d Σ.(2)

Now, let B ∼ IMGp(α + n/2, β, Ψ0). Then, from
∫

B>0 h(B)dB = 1 we get∫
B>0

det(B)−(α+n/2)−(p+1)/2 exp
[
− 1

β
tr(Ψ0B

−1)
]

dB

= Γp

(
α +

n

2

)
βp(α+n/2) det(Ψ0)−(α+n/2).(3)

Substituting (3) in (2) and substituting Ψ0 = β
2 (X ′Ω−1X + Ψ) yields

f(X) =
det(Ψ)α det(Ω)−p/2Γp(α + n/2)

(2π/β)np/2Γp(α)
det

(
β

2
X ′Ω−1X + Ψ

)−(α+n/2)

.

Finally, from the following identity

det
(

Ψ +
β

2
X ′Ω−1X

)
= det(Ψ) det

(
Ip +

β

2
Ψ−1X ′Ω−1X

)

= det(Ψ) det
(

In +
β

2
Ω−1XΨ−1X ′

)
,

we obtain the result. �
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3. Some properties of the GMT Family

In this section, various properties of the GMT distribution are studied using
its p.d.f.

Theorem 3.1. If T ∼ Tn,p(α, β, M, Ω, Ψ), then T ′ ∼ Tp,n(α, β, M ′, Ψ, Ω).

Proof. By noting that

det

(
In +

β

2
Ω−1(T − M)Ψ−1(T − M)′

)
= det

(
Ip +

β

2
Ψ−1(T ′ − M ′)Ω−1(T ′ − M ′)′

)
,

the result follows. (See page 137 Gupta and Nagar [11]) �

Theorem 3.2. Let T ∼ Tn,p(α, β, M, Ω, Ψ) and A(n × n) and B(p × p) be
nonsingular matrices, then ATB ∼ Tn,p(α, β, AMB, AΩA′, B′ΨB).

Proof. Transforming W = ATB, with the Jacobian of transformation J(T →
W ) = det(A)−p det(B−n), from density (3) of T follows the density of W equals

f(W ) =
Γp(α + n/2)

Γp(α)(2π/β)np/2
det(Ψ)−n/2 det(Ω)−p/2 det(A)−p det(B)−n

×det

(
In +

β

2
Ω−1

(
A−1WB−1 − M

)
Ψ−1

(
A−1WB−1 − M

)′)−(α+n/2)

=
Γp(α + n/2)

Γp(α)(2π/β)np/2
det(AΩA′)−p/2 det(B′ΨB)−n/2

×det

(
In +

β

2
(AΩA′)−1(W − AMB)(B′ΨB)−1(W − AMB)′

)−(α+n/2)

,

where W ∈ R
n×p, and, hence the result. �

Theorem 3.3. Let T ∼ Tn,p(α, β, M, Ω, Ψ), then the characteristic function
of T is given by

φT (Z) =
exp[tr(iZ ′M)] det(Ψ)α

Γp(α)(2β)αp
det(Z ′ΩZ)αBα(

1
2β

Z ′ΩZΨ),

Further, E(T ) = M and, COV (T ) = 2(Ω⊗Ψ)
β(2α−n−1) .

Proof.

φT (Z) = E[exp (tr(iZ ′T ))], Z ∈ R
n×p

= E[E(exp (tr(iZ ′T ))|Σ)]

= E[exp (tr(iZ ′M − 1
2
Z ′ΩZΣ))]

= etr(iZ′M)

∫
Σ>0

exp [−1
2

tr(Z ′ΩZΣ)]g(Σ)d Σ,
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where Σ ∼ IMGp(α, β, Ψ), then

φT (Z) =
exp[tr(iZ ′M)] det(Ψ)α

Γp(α)βαp

×
∫

Σ>0

det(Σ)−α−(p+1)/2 exp[− tr(
1
β

ΨΣ−1 +
1
2
Z ′ΩZΣ)]d Σ

=
exp[tr(iZ ′M)] det(Ψ)α

Γp(α)(2β)αp
det(Z ′ΩZ)αBα(

1
2β

Z ′ΩZΨ),

where Bδ is the type two Bessel function of Herz of matrix argument. Bδ is
defined as

Bδ(WZ) = det(W )−δ

∫
S>0

exp
(
tr(−SW − S−1Z)

)
det(S)−δ− 1

2 (p+1)dS,

(See p39 Gupta and Nagar [11] and Herz [15].)
Using conditional expectation we have

E(T ) = E(E(T |Σ))

= E(M) = M,

Cov(T ) = E(Cov(T |Σ))

=
2E(Ω ⊗ Σ)

β(2α − n − 1)

=
2(Ω ⊗ Ψ)

β(2α − n − 1)
.

�

In the following section another point of view is considered concerning the
result obtained in Theorem 2.1. This result is an extension to the work of
Dickey [8].

Theorem 3.4. Let X ∼ Nn,p(0, In ⊗Ω), independent of S ∼ MGn(α, β, Λ−1)
define

T = (S−1/2)′X + M,

where M(n × p) is a constant matrix and S1/2(S1/2)′ = S. Then, T ∼
Tn,p(α, β, M, Λ, Ω).

Proof. The joint density of X and S is given by

f(X, S) =
(2π)−np/2 det(Ω)−n/2 det(Λ)α

βnαΓn(α)
det(S)α−(n+1)/2

× exp
[
− tr

(
1
β

ΛS +
1
2
XΩ−1X ′

)]
, S > 0, X ∈ R

n×p.

Now, let T = (S−1/2)′X + M . The Jacobian of transformation is J(X → T ) =
det(S)p/2. Substituting for X in terms of T in the joint density of X and S,
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and multiplying the resulting expression byJ(X → T ), we get the joint p.d.f of
T and S as

f(T, S) =
(2π)−np/2 det(Ω)−n/2 det(Λ)α

βnαΓn(α)
det(S)α−(n+1)/2+p/2

× exp

[
− tr

(
1

β
Λ +

1

2
(T − M)Ω−1(T − M)′

)
S

]
, S > 0, T ∈ R

n×p

Now integrating out S using multivariate gamma integral as (Anderson [1] )∫
Z>0

det(Z)α−(p+1)/2 exp[− tr(ΛZ)]dZ = det(Λ)−αΓp(α).

Then the density of T is obtained as

f(T ) =
(2π)−np/2 det(Ω)−n/2 det(Λ)αΓn(α + p/2)

βnαΓn(α)

×det

(
1

β

(
Λ +

β

2
(T − M)Ω−1(T − M)′

))−(α+p/2)

=
det(Ω)−n/2 det(Λ)−p/2Γn(α + p/2)

(2π/β)np/2Γn(α)

×det

(
In +

β

2
Λ−1(T − M)Ω−1(T − M)′

)−(α+p/2)

.

�

4. Bayes Estimation

Over the years, considerable research has been done in the field of the
Baysian estimation. For example, Bekker and Roux [4] considered the Bayesian
analysis of the multivariate normal distribution when its covariance matrix has
a Wishart prior under quadratic loss. In the same spirit, Haff [13, 14], Dey
and Srinivasan [7] and Towhidi and Behboodian [20] applied entropy and ex-
tended reflected normal loss functions in the Bayesian estimation of covari-
ance matrix of the multivariate normal distribution respectively. Thabane and
Haq [19] derived the Bayes estimator in the matrix variate normal distribution
under square error loss (SEL) function. They applied their results in Bayesian
estimation of the multivariate linear models. Dı́az-Garćıa and Gutiérrez [9]
also considered the distribution of a random singular matrix as a prior to the
Bayesian inference of the multivariate linear models. For application purposes,
in this section the Bayes estimator of Σ based on the conditional property is
derived. In this regard, we consider Kullback Leibler divergence loss (KLDL)
as the measurement. First we state a result due to Das and Dey [6].

Lemma 4.1. Suppose A is an estimator for unknown parameters matrix Σ
, where π(A|D) and π(Σ|D) are the corresponding posterior probability den-
sity function over Rp respectively, where D indicates Data. Now the posterior
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expected loss of A, when the posterior distribution is π(Σ|D), is

ρ(Σ, A) =
∫

Σ>0

L(Σ, A)dFπ(Σ|D)(Σ),

where the loss function is log
(

π(A|D)
π(Σ|D)

)
. Then the Bayes rule is

δπ(D) = argmaxΣ>0π(Σ|D),

which is the mode of posterior distribution of π(Σ|D).

Note that the posterior expected loss function in Lemma 4.1,

ρ(Σ, A) = E

[
log

(
π(A|D)
π(Σ|D)

)]
,

can be interpreted as the Kullback Leibler divergence of the posterior distribu-
tion evaluated under action A from the true posterior distribution of unknown
parameters Σ. Therefore the posterior expected loss or Kullback Leibler diver-
gence is minimum, if we choose our action as posterior mode.

Lemma 4.2. Let X |Σ ∼ Nn,p(0, Ω ⊗ Σ). Further Σ has prior distribution as
IMGp(α, β, Ψ). Then the posterior distribution of Σ is

π(Σ|X) =
det(Ψ)α+n/2 det(Σ)−(α+n/2+(p+1)/2)

Γp(α + n/2)βpα+np/2

× det

(
In +

β

2
Ω

−1
XΨ

−1
X

′
)α+n/2

exp

(
− tr(

1

2
Ω

−1
XΣ

−1
X

′
) − tr(

1

β
ΨΣ

−1
)

)
.

Proof. By definition

π(Σ|X) =
f(X |Σ)π(Σ)

m(X)
.

By applying Theorem 2.1 we obtain the underlying result. �

Theorem 4.1. Suppose X |Σ ∼ Nn,p(0, Ω⊗ Σ).Further Σ has the prior distri-
bution as IMGp(α, β, Ψ).Under KLDL function,the Bayes estimation of Σ is
given by

Σ̂ = [α + n/2 + (p + 1)/2]−1

(
1
2
X ′Ω−1X +

1
β

Ψ
)

.

Proof. Taking logarithm on both sides of π(Σ|X) in Lemma 4.2 yields

log[π(Σ|X)] = constant − (α + n/2 + (p + 1)/2) log det(Σ)

− 1
2

tr(Ω−1XΣ−1X ′) − 1
β

tr(ΨΣ−1).
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Now differentiating with respect to Σ and equating the derivative to 0, gives
( Seber [18] and Mardia et al. [16])

∂ log π(Σ|X)
∂Σ

= − (α + n/2 + (p + 1)/2)[2Σ−1 − diagΣ−1]

+
1
2
[2Σ−1X ′Ω−1XΣ−1 − diag(Σ−1X ′Ω−1XΣ−1)]

+
1
β

[2Σ−1ΨΣ−1 − diag(Σ−1ΨΣ−1)]

= 2M − diagM = 0,

where

M = −(α + n/2 + (p + 1)/2)Σ−1 +
1
2
Σ−1X ′Ω−1XΣ−1 +

1
β

Σ−1ΨΣ−1.

Then

Σ−1[−(α + n/2 + (p + 1)/2)Σ +
1
2
X ′Ω−1X +

1
β

Ψ]Σ−1 = 0,

which completes the proof. �

5. Application to the multivariate linear model

In this section, following Thabane and Haq [19] we consider the Bayesian
application of the proposed results in the multivariate linear model. As a
precise setup consider the multivariate linear model

Y = XB + E,

where Y is a n × p matrix of observed responses, X is a n × m matrix of
fixed elements with rank(X) = m, B is a m× p matrix of unknown regression
parameters, and E is a matrix of errors with E ∼ Nn×p(0, In ⊗ Σ).
The likelihood function is given by

f(Y |B, Σ) = (2π)−np/2 det(Σ)−n/2 exp
[
−1

2
tr(Y − XB)′(Y − XB)Σ−1

]
.

We assume that our prior information about the parameter space of (B, Σ)
is summarized by B|Σ ∼ Nm×p(B0, (X ′X)−1 ⊗ Σ) and Σ ∼ IMGp(α, β, Ψ).
Thus The conjugate prior densities are

f(B|Σ) = (2π)−mp/2 det(X ′X)p/2 det(Σ)−m/2 exp

[
−1

2
tr(B − B0)

′X ′X(B − B0)Σ
−1

]
,

and

f(Σ) =
det(Ψ)α

Γp(α)βαp
exp

[
− 1

β
tr(ΨΣ−1)

]
det(Σ)−α−(p+1)/2,

where Σ(p × p) > 0 and Ψ(p × p) > 0.

Combining the likelihood function with the prior, then after a few matrix algebraic
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steps, the posterior density is

f(B, Σ|Y ) ∝ det(Σ)−(α+ m+n
2 )− p+1

2

× exp

[−1

2
tr

[
(B − B̂∗)

′(2X ′X)(B − B̂∗) + S∗
]
Σ−1

]
,(4)

where

B̂∗ =
B0 + B̂

2
,

S = (Y − XB̂)′(Y − XB̂),

B̂ = (X ′X)−1X ′Y,

S∗ =
2

β
Ψ + S + (B̂ − B0)

′(2X ′X)−1(B̂ − B0).

The marginal posterior density of B is obtained by integrating Eq.(4) with respect to

Σ

f(B|Y ) =

∫
Σ>0

f(B, Σ|Y )dΣ

∝
∫

Σ>0

det(Σ)−(α+ m+n
2 )− p+1

2

× exp

[−1

2
tr

[
(B − B̂∗)

′(2X ′X)(B − B̂∗) + S∗
]
Σ−1

]
dΣ.(5)

we note that the posterior density (5) can be write as

f(B|Y ) =

∫
Σ>0

f(B|Σ, Y )f(Σ|Y )dΣ,(6)

where

f(B|Σ, Y ) = (2π)
−mp

2 det(2X ′X)
p
2 det(Σ)

−m
2

× exp

[
−1

2
tr(B − B̂∗)′(2X ′X)(B − B̂∗)Σ−1

]
,(7)

f(Σ|Y ) =
det(S∗)−(α+ n

2 ) det(Σ)−(α+ n
2 )− p+1

2

Γp(α + n
2
)βp(α+n/2)

exp

[
− 1

β
tr(S∗Σ−1)

]
.(8)

Substituting (7) and (8) in (6) and using theorem 2.1 we get

B|Y ∼ Tm,p

(
α + n/2, β, B̂0, S∗, (2X ′X)−1

)
.

From Theorem 3.3 E(B|Y ) = B̂∗ and the mode of B|Y is B̂∗, since having a symmetric

distribution. Thus under SEL and KLDL the Bayesian estimate of B is identical and

equal to B̂∗.
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[9] J. A. Dı́az-Garćıa, J. R. Gutiérrez, Distribution of the generalized inverse of a random

matrix and its applications, J. Statist. Plann. Inf., 136 (2006), 183-192.
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